Assembler Language
c "Boot Camp"
Part 4 - Arithmetic;

Program Structures
SHARE 1n San Francisco

P
August 18 - 23, 2002
- Session 8184
aa
_j'

s

Introduction

_IWho are we?
= John Dravnieks, IBM Australia

= John Ehrman, IBM Silicon Valley Lab

= Michael Stack, Department of Computer
Science, Northern Illinois University

Introduction

_IWho are you?

= An applications programmer who needs to
write something in S/390 assembler?

= An applications programmer who wants to
understand S/390 architecture so as to better
understand how HLL programs work?

= A manager who needs to have a general
understanding of assembler?

_1Our goal is to provide for professionals an
introduction to the S/390 assembly language

Introduction

_I'These sessions are based on notes from a
course 1n assembler language at Northern
Illinois University

_1'The notes are 1n turn based on the textbook,
Assembler Language with ASSIST and
ASSIST/I by Ross A Overbeek and W E
Singletary, Fourth Edition, published by
Macmillan

Introduction

_1'The original ASSIST (Assembler System for
Student Instruction and Systems Teaching)
was written by John Mashey at Penn State
University

_IASSIST/I, the PC version of ASSIST, was
written by Bob Baker, Terry Disz and John
McCharen at Northern Illinois University

Introduction

_1Both ASSIST and ASSIST/I are in the public

domain, and are compatible with the
System/370 architecture of about 1975 (fine
for beginners)

_1Both ASSIST and ASSIST/I are available at
http://www.cs.niu.edu/~mstack/assist

Introduction

_1Other materials described in these sessions
can be found at the same site, at
http://www.cs.niu.edu/~mstack/share

_|Please keep 1n mind that ASSIST and
ASSIST/I are not supported by Penn State,
NIU, or any of us

Introduction

_1Other references used in the course at NIU:
= Principles of Operation
= System/370 Reference Summary
= High Level Assembler Language Reference

_IAccess to PoO and HLASM Ref is normally
online at the IBM publications web site

_IStudents use the S/370 "green card" booklet

all the time, including during examinations
(SA22-7209)

Our Agenda for the Week

_ISession 8181: Numbers and Basic
Arithmetic

_1Session 8182: Instructions and Addressing

_ISession 8183: Assembly and Execution;
Branching

Our Agenda for the Week

_1Session 8184: Arithmetic: Program
Structures

_ISession 8185: Decimal and Logical
Instructions

_ISession 8186: Assembler Lab Using
ASSIST/I

Today's Agenda

_1'The MULTIPLY and DIVIDE Instructions

_EQUate and Extended Branch Mnemonics

_!Literals, LOAD ADDRESS, and Looping

_IInternal Subroutines

c The MULTIPLY and
- DIVIDE Instructions

In Which We Encounter
"Higher" Math

Wl

7

Multiplication

_MULTIPLY, like ADD and SUBTRACT,
comes in two flavors: RR and RX

_1Both RR and RX require the first operand to
be an even/odd pair of registers, implicitly
specified by the even-numbered register

_1'The RR and RX formats are

= | abel OOOVROOOR,, R,
= | abel OOOMIOOOTR,, Dy(X,, B,)

Multiplication

_1'The multiplicand 1s the word in register
R+1 (the 2nd of the pair)

_1'The multiplier 1s either the word 1n register
R, or the word whose address is D,(X,, B,)

_1'The product will be two words long in the
even/odd pair R/R;+1

_|'The Condition Code is not changed by
MULTIPLY

Multiplication

Multiplicand
. R, or
D,(X,,B.)
Multiplier
S R, R,+1
- Product

(odd)

(Word in reg
or word 1n
memory)

Multiplication Examples

_IFor example: if ¢(R9) = 00000003,
c(R7)=FFFFFFFD (-3), and c(R6) is anything

" Then MRLLG, 9 leaves R9 unchanged and

the result is in R6/R7 = FFFFFFFFLFFFFFFF7
(which is -9 in decimal)

_INote that the magnitude of the result must
be very large before the even-numbered
register has anything besides sign bits

Multiplication Examples

_Note that MRLIB, 9 squares the value in
R9, with the result in R8/R9
= What does MRLS, 8 do?

_ISome examples, all of which assume:
= ¢(RO)=F01821F0, c¢(R1)=FFFFFFFF
= ¢(R2)=00000003, c¢(R3)=00000004

= WORD1LIIDCLILF 10°
= WORD2LILIDCLILIF - 2

Multiplication Examples

MR 2,1: R2/R3 = FFFFFFFFOFFFFFFFC

MR 2,2: R2/R3 = 000000000L0000000C

/MR 2,3: R2/R3 =00000000L100000010

M 2,WORD1
= R2/R3 = 000000000100000028

/M O,WORD2
= RO/R1 = 00000000L100000002

Division

_IDIVIDE also comes in RR and RX formats

_1Both RR and RX require the first operand to
be an even/odd pair of registers, implicitly
specified by the even register

_I'The RR and RX formats are

= | abel UOODROOUOR, R,
= | abel LLODLCOR,, D(X, B,)

Division

_|'The dividend (numerator) is two words long
in the even/odd pair R,/R,+1

_IThe divisor is either the word in register R,
or the word whose address is D,(X,, B,)

_!The remainder will be in register R ;with
sign the same as the dividend's

_|The quotient will be in register R+1 with
sign following the usual rules of algebra

20

Division

(even)

- Dividend
S Rl R]_ + 1
< R, or
D,(X;,B.)
Divisor
S R, S R,+1
Remainder Quotient

(odd)

(Word in reg
or word 1n
memory)

21

Division

_|If the quotient cannot be represented as a
32-bit signed integer, a "fixed-point divide"
exception occurs; this also happens if the
divisor 1s zero

_IN.B. The dividend will often fit into a single
register, but the sign must be correct in both
registers of the pair

_1'This can be assured by first multiplying by 1
(product is in the register pair)

22

Division Examples

_ISome examples, all of which assume:
= ¢(R2) = 00000000, c¢(R3) = 00000014 (20)
= ¢(R4) = FFFFFFFF, c¢(R5) = FFFFFF10 (-240)
= ¢(R1) = 00000003

= WORD1[LIDCLILF - 4
= WORD2[LILIDCLILF 14"

|1 DR 2,1 (so dividend is in R2/R3)
= R2/R3 = 00000002100000006 (2,6)

23

Division Examples

DR 2,4
= R2/R3 = 00000000LFFFFFFEC (0,-20)

DR 2,5
= R2/R3 = 00000014100000000 (20,0)

/DR 4,1 (so dividend is in R4/Rb)
= R4/R5 = 00000000LFFFFFFBO (0,-80)

D 2,WORDI1
= R2/R3 = 00000000 FFFFFFFB (0,-5)

24

Division Examples

D 2,WORD2
= R2/R3 = 00000006100000001 (6,1)

D 4,WORD1
= R4/R5 = 00000000L10000003C (0,60)

D 4,WORD?2
= R4/R5 = FFFFFFFECFFFFFFEF (-2,-17)

25

c Register EQUates &
‘ Extended BRANCH

Mnemonics

} In Which We Find More Than
One Way to Say the Same Thing

s

-y

7

Register EQUates

_It 1s possible to define symbols using the
EQU instruction
= | abel LEQULeXxpr essi on

_I'Then, when the assembler encounters
| abel it will substitute the value of

expr essi on

_IWe will use expr essi on only as integer
values, but it can be written in other ways

27

Register EQUates

_EQU lets us define symbolic register names

= ROCOEQUOCO
= R1OODEQUOM
= OO0 .

= R1500EQUOTMS

_| Many programmers use these to cause
register references to appear in the symbol
cross-reference listing (although the current
release of HLASM has an option to produce
a register cross-reference listing)

28

Register EQUates

_|Be careful how you think about the symbols,
though - all the assembler does 1s substitute
values

_|For example, assuming that register equates
are available, consider the object code for

= OOLOO0OR3, RACY !) OO0 58300004)
= OLOOOR3, R4(R5, R6) [58356004)

_|Because they can be confusing to learners, it
may be best to not use them

29

Extended BRANCH Mnemonics

_1'The BRANCH ON CONDITION instructions
(BC,BCR) require a branch mask

_IWe have thus far given the mask as
B' XXXX'

_I'There are, however, special mnemonics

which incorporate the mask into the "op
code”

30

Extended BRANCH Mnemonics

_1S0, for example, after a compare instruction,
use
u BE[[Lladdr instead of
m BCLCB' 1000’ , addr

_|'The BE extended mnemonic, for example,
can be thought of as opcode 478

_IMost of the extended mnemonics can be
found in the "green card" on p. 19

31

Literals,

‘ LOAD ADDRESS, and
- Looping
In Which We Face a Most

Difficult But Very Important
Concept: Addresses

7
@

Literals

_IRecall that the DC instruction defines an
area of storage within a program, with an
initial value

_ISince that value is only initial, it can easily
be changed (and very often is)

_|For example, a counter to be incremented

may be 1nitially defined as
= COUNTOOODCHOOOF O

33

Literals

_I'There is also a need for a "constant," a value
in storage which is intended to retain that

value
=]

= [
= ONE

ML, ONE
]

DCLLEEF" 1°

| We can instead code the constant as part of
the instruction, in place of the usual second
operand memory address:
= (OOOOMOOo4, =F 1

34

Literals

_IIn this case, the second operand is coded as
a literal, which i1s indicated by the preceding
equal sign

_|'This 1s also good documentation, as the
value 1s seen immediately, rather than after
searching the program listing for a data area

_I But where will the storage for this literal be?
With a DC (or DS) the location is exactly
where the DC or DS occurs

35

Literals

_IA literal, on the other hand, will be located
in a "pool" of literals whose location is

defined by using the LTORG (LiTeral pool
ORi1Gin) instruction

_As many LTORGs as needed may be used,
and each creates a pool for all previous
"unpooled" literals

_|This means the same literal (e.g., =F 1")
may appear in multiple pools

36

The LOAD ADDRESS Instruction

_1'This 1s very simply stated
= | abel IOIOLALOIIOR,, D(X, B,)

= Replaces the contents of register R, with the

effective address of the second operand,
DZ(X21 BZ)

_|Here may be a help to understanding:

L
LA

L]

5, WORD is the same as the pair:
5, WORD followed by

5, 0(, 5)

37

The LOAD ADDRESS Instruction

_ISometimes only D, is specified - that is, X,
and B, are zero
= [[[OLALDS, 4 (0<=D,<=4095)

_INote: this is the same as LALLB, 4(0, 0)

_1This 1s a common method of placing a small
number in a register with no memory access

38

The LOAD ADDRESS Instruction

_ LA may also be used to increment (but not
decrement) a value in a register

= [JOOLALLe, 1(, 6) Increase c(R6) by 1
_IN.B. The high order bit or byte of R6 is set to

zero, depending on something called
addressing mode (beyond our scope)

39

Demo Program to Build a Table - 1

*[Thelf ol | om nglpr ogr anibui | dsUalt abl eClof [Of ul | wor dsandlt henllexits

* [t heldconpl et edpr ogram [l t [r eadsUonelhunber Cof f Ceachl nput Ccar d,
*[r ecogni zi nglt helClendof [0 nput CwhenOalt rai | er Ccar dlcont ai ni ng

* 199999901 sllencount er ed. LThel ogi clUof [t heOpr ogr anti s:

*

*OOOSt ep. I nitiali zeOR3k opoi nt [t ol helIf i rst Cent ry n(k helt abl e.
* DOOOOOOOO00OR4A, Dwhi ch sOusedt ocount [t hellent ri es nlt helt abl e, 4 s
* OOOO0000003 ni tial 1yOset Ot olDO.

*

* [0St ep2. IReadlt heldfir st Ccard.

*

* [0St ep3. OOCheckfordtheltrailer. D fLt0 st heltrail er Ogolt oISt epl6
* OOOO000000 ™ oCexi t Ot heOpr ogr am

*

* [0St ep4. OOPut f heOnunber O nt ot helt abl e addi ng1[t o[t hellcount [of
* JOOOOOOOO I Cent ri esOandOi ncr enent i nglt heOpoi nt er [t ok helnext Centry) .

*

* [JOOSt epb. [IReadt helnext Ocar dJandgolback [t oISt ep[13.

*

* OOSt epl6. ITEXT t [t helpr ogr am

40

Demo Program to Build a Table - 2

R R b b b b S I b b b b b b i b b b b b b I I I R I b b b b B S b b b b b b S b b b b b b I S b b b b b IR SRR R I S b b b S b b b b

TABUI LDULICSECT
OOOOOOEEUSE NGTABUI LD, 15

*

**x<Step>L ni ti al i zellcount er CandOpoi nt er [t ollnext Clentry

*

OOOOOOOOOSROOOMH, 4 I0000000O0O0Set Ocount UOof Cent ri est o0

OOOOOOO0OL ACOOO3, TABLELDOOOOPoi nt Cat Cf i rst Cent ry[(next Conelt ol il)

*

***x <GSt ep2>IIReadlt helfirstlicard

*

OOOOOOOCXREADOICARD, 80 OO t O sUassunmedt hat [t her el sOallcar diand
* IDDOODOODOODOO00000000000000C hat G t Ocont ai nsOalnunber
OOOOOOOCXDEC! [2, CARDLOUOConver t L nput Onunber [t olbi nar y n[R2

*

41

Demo Program to Build a Table - 3

*** <GSt epB>00CheckIfor [t rail er

*

TRAI LCHKOCHOOO2, TRAI LEROOOCheck [or [t r ai | er 1999999
OOOOOOOOOBECOOCENDI NPUT

*

***<St epA>UI00OADALE helnunber Lk ol hellt abl e

*

OOOOOOO0STOOAO R, 0(, 3) L Put Onunber O nt olnext sl ot Ui n(k helt abl e
OOOOOOOOCL AL, 1(, 4) OO00O00Add 1L olCcount Cof Clent ri esl nt helk abl e
OOOOOO0O0OL AL, 4(, 3) OO Vbvellent ryCpoi nt er Lf orwar dlent ry

*

*** <GSt eplb>LIIReadlt helnext [lcar dlandget [t heChunber [nt oR2
*

OOOOOOOCCIXREADLCARD, 80

OOO0OOOOOCIXDEC 12, CARDOOO I IThe Onext Onunber O sCOnowld n[OR2
OOOOOOOOOBOOOCCTRAI LCHK

*

***<St epll6>LITRet ur n[* ok hellcal | er

*

ENDI NPUTUBROOCO1L 4 OOOOOOO000OO0EX t Of r onidt heOpr ogr am

42

Demo Program to Build a Table - 4

OOOOOOOECAL TORG
CARDUOIOOODSOOOCL 8 0 OO Car d G nput Car ea
TABL ELOODSHES 0 FOOOOOOOOOOCORooif or [B00ent ri es

TRAI LERLUDCLLLLF 999999°
LOOCOCCCCCENDOCITABUL LD
$ENTRY

123

456

789

234

567

890

345

999999

43

Looping Using BCT and BCTR

_I'The loop we saw 1n the demo 1s controlled
by the number of records in the input file

_ISometimes, a loop i1s to be executed n times
1.Set | equal ton

2. Execute the body of the loop
3.8et | [to | -1

4.1f | .NE. O, go back to 2
5. Otherwise, continue (fall through)

_I'This loop 1s always executed at least once

44

Looping Using BCT and BCTR

_I'There 1s a single 1instruction which

implements this loop control - BRANCH ON
COUNT

= | abel OUIBCTRUUUIR, R,
= | abel OIBCTLLLLOR,, D.(X,, B,)

_I'The logic is
= Decrement R, by one
= If ¢(R,) .NE. O, branch; otherwise, continue

45

Looping Using BCT and BCTR

_In BCTR, if R, = 0, no branch is taken,
although the R, register is still decremented

LOOPLIOLALL12, 200

O, ..
OOO0OOBCTUMIL 2, LOOPULUOOHowmany L i mes?
Khkhkhhhhhhhhhhhhhkhkhkhkhkkkk*
OO AL 0, LOOP

OO AL L, 413

LOOPLIL . .

OOOOEOBCTROLL, 10 OO0 M Howmany [t 1 mes ? 0
Khkkhhhhhhhhhhhhhhhkkkkk*

OOOOOCL ALEE0, LOOP

OO0 AL, 10

LOOPLLL . .

OOOOOOBCTROL, 00000000 Howmany L i mes?

46

c Internal Subroutines

P

7

In Which We Show That You
Can Go Home Again, and How

—
7

\

The Program Status Word (PSW)

_1'The PSW 1is an eight-byte aggregation of a
number of important pieces of information,
including
= The address of the next instruction
= The Interruption Code
= The Condition Code (CC)
= The Program Mask

= The Instruction Length Code (ILC) (in ASSIST
only)

48

The Program Status Word (PSW)

_IN.B. - The "basic" PSW format used in
ASSIST dates to the 1970s and is not current;
even so, it does have some fields which will

help us

_1'The PSW fields in ASSIST that we want are

= Bits 16-31:
= Bits 32-33:
= Bits 34-35:
= Bits 36-39:
= Bits 40-63:

Interruption Code
Instruction Length Code
Condition Code

Program Mask

Next Instruction Address

49

The Program Status Word (PSW)

_I'The Instruction Length Code (ILC) has the
following meaning for its four possibilities

ILC (Dec) | ILC (Bin) | Instr types ?31;;: S?f LIerIlls;:h
0 00 szlji?;ble
1 01 RR 00 hagvlirird
2 10 RX, RS, SI 01 hag:vvc?rds
2 10 RX, RS, SI 10 hal?vvvvfrds
3 11 SS 11 hanS\l;ifds

50

The Program Status Word (PSW)

_I'The Instruction Length Code can be used to
determine the address of the current
instruction

= Multiply by two to get the number of bytes in
the current instruction

= Subtract it from the address of the next
instruction

_I'This 1s very important in analyzing a dump
from a program problem

51

BAL/BALR and Subroutines

_I'There 1s a very important instruction which

1s used to control access to subroutines,
BRANCH AND LINK

_1'The RR and RX formats are
= | abel OIBALRUTR, R

= | abel IBALLIIIOR,, D.(X, B,)

52

BAL/BALR and Subroutines

_|'Their operation 1s simple
1. Copy the 2nd word of the PSW to register R,

2. Branch to the address given by the second
operand

_IStep 1 of the operation of BAL/BALR copies
to register R, the address of the next

instruction (this is very important), and if in
24-bit addressing mode, the ILC, CC, and
Pgm Mask

53

BAL/BALR and Subroutines

_1'This operation means that, if we want to
execute a subroutine called SORT, we can

1.Use BAL[LI14, SORT in the main routine, to

place the address of the instruction following
the BAL in R14, then branch to SORT

2.Use BRLII14 atthe end of the SORT
routine to return and resume the main routine

_'The RR form, BALR, 1s very common,
especially BALR114, 15 for "external”

subroutines

54

BAL/BALR and Subroutines

_1 A special use of BALR occurs when R, = 0;

then no branch occurs after placing the
address of the next instruction in R,

= [
= e
= NEVBBASE

BALRL[12, O
US| NGLINEVBASE, 12

1 .. O next [i nstruction)

_1'This 1s often used to establish a base

register

55

The STM and LM Instructions

_Having subroutines is all very nice, but with
a limited number of registers, it is useful for
subroutines to save registers at entry, then

restore them at subroutine exit

_1 A third instruction format, RS, is used. Our

first RS instruction is STORE MULTIPL.

= | abel OODOSTMIR,, R,, D,(B,)

L
0,

= Copies the contents of the range of registers R,
through R; to consecutive words of memory

beginning at D,(B,)

56

The STM and LM Instructions

_Thus, STM L4, 8, SAVE would place the

contents of R4, Rb, R6, R7, and R8 in the five
fullwords beginning at location SAVE

_And STM1114, 1, SAVE would copy R14,
R15, RO, and R1 to four consecutive

1

fullwords at location SAVE (note the
register wrap-around)

“hohgshehe he,hphhp, is the encoded form of
an RS instruction

57

The STM and LM Instructions

L]

_|'The inverse operation is LOAD MULTIPL)]
= | abel OOLMIIR, R;, D,(B,)
= Copies the contents of the consecutive words

of memory beginning at D,(B,) to the range of
registers R, through R;

_ISince one of the responsibilities of a
subroutine 1s to assure that registers contain
the same contents at exit that they did at
entry, we can use STM and LM to save and
restore them

58

Saving and Restoring Registers

ROUTI NELILUSTMLRO, R15, SAVEAREALISavelal | [r egs
OOOEHOoE. .

OO0 body Uof L out 1 ne

OO, .

OOOOOOOL MOOOERO, R15, SAVEAREALRest or eldal | [egs
OOOOOOOOBROTR1I4 - Ret ur nlk olical | er

EREEE NN

SAVEAREALDSLI TN 6F Storellkegsihere

59

Type A Data: Addresses
1 | abel DCLLLA(exp) [or DSLILA]

_If eXp 1s a non-negative integer, the

generated fullword will have the binary
representation of the integer (same as
F' exp')

_IIf exp 1s the label of an instruction or a data
area, or is of the form label+n or label- n, the

generated fullword will contain the
appropriate address

60

Type A Data: Addresses

1 abel OOODCHOOA(exp) [or DSLILIA]

_If exp 1s the label of an EQU of a
non-negative integer, then the symbol is
interpreted as a non-negative integer, and
the generated fullword will have the binary
representation of the integer

61

Type A Data: Addresses

_|'The following are examples

= DCLLA(123) generates 000000/B
= DCUA(R12) generates 0000000C
= DCLIA(SAVE) generates address of SAVE

_IVery important: All that 1s known at
assembly time 1s the relative location, not
the memory address; it is left to the
‘program loader" to adjust the relative
location at execution time, to make it the
address in memory

62

Type A Data: Addresses

_But why bother? Why not just use LA? The
answer 1s that a single base register can
address only 4096 bytes (000- FFF)

(OO ACEOR4A, TABLE3LILLIThi sCf ai | s!

RN RN

OO COOEEOR4 , ATABLE3LLIThi s Cwor ks!
NN RN

ATABLE3ILIDCLLIA(TABLES)
TABLE1DSLII T 024FLIK =[4096[byt es)
TABLE2 LILIIDSLII1024F
TABLE3LILIIDSLLILI1024F

BN R NN

63

Next Time

_ITomorrow, we will look at how decimal
arithmetic is performed, and how numbers
are converted from binary to decimal to
character (and the reverse)

_|Accurate decimal arithmetic 1s an important
characteristic of S/390, particularly for
financial applications

_IWe'll also cover the instructions which
perform the operations AND, OR, and XOR

64

